MATHEMATICS SPECIALIST

MAWA Year 12 Examination 2018

Calculator-assumed

Marking Key

© MAWA, 2018

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 8 of term 2, 2018

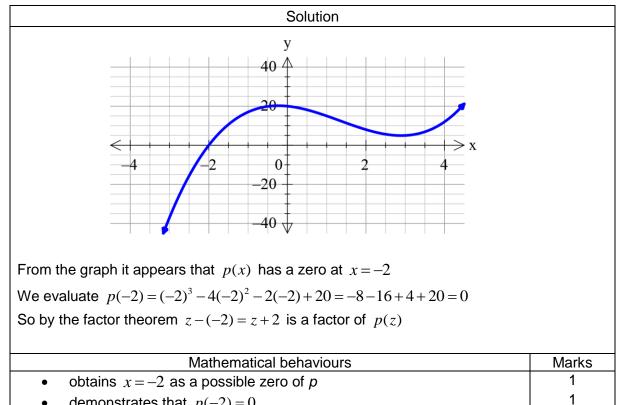
Question 8

(5 marks)

Solution	
If $ x = x^2 + x - 8$ then if $x > 0$ we have $x = x^2 + x - 8 \Rightarrow x^2 = 8 \Rightarrow x = \pm \sqrt{8}$. Since we have assumed that $x > 0$ we reject the negative square root.	
If $x < 0$ then $-x = x^2 + x - 8 \Rightarrow x^2 + 2x - 8 = 0 \Rightarrow (x+4)(x-2) = 0 \Rightarrow x = 2, -4$	
Since we have assumed that $x < 0$ we reject the positive root. Hence the solution is $x = \sqrt{8}$ or -4 .	
Mathematical behaviours	Marks
• calculates the correct root assuming that $x > 0$ (2 marks)	1
• calculates the correct root assuming that $x < 0$ (2 marks)	1
states the overall solution correctly	1

Question 9 (a)

(3 marks)



- demonstrates that p(-2) = 0•
- deduces that z+2 is a factor of p(z)

Question 9(b)

(3 marks)

1

Solution	
Long division gives that $z^3 - 4z^2 - 2z + 20 = (z+2)(z^2 - 6z + 10)$	
If $z^2 - 6z + 10 = 0 \Rightarrow z = 3 \pm i$ by either using the quadratic formula or completing the square	
Hence $z-3-i$ and $z-3+i$ are the conjugate linear factors of $p(z)$	
Mathematical behaviours	Marks
identifies the correct quadratic factor	1
 determines correctly the zeros of the quadratic factor 	1
 states correctly the corresponding conjugate linear factors 	1

CALCULATOR-ASSUMED MARKING KEY

Question 10(a)

(2 marks)

Solution	
$\mathbf{v}(0) = 200\cos\frac{\pi}{3}\mathbf{i} + 200\sin\frac{\pi}{3}\mathbf{j}$ ms ⁻¹ = 100 $\mathbf{i} + 100\sqrt{3}\mathbf{j}$ ms ⁻¹	
Mathematical behaviours	Marks
• correctly states the horizontal and vertical components of $\mathbf{v}(0)$	1
simplifies correctly	1

Question 10(b)

Solution	
The acceleration is	
$\mathbf{a}(t) = -9.8 \mathbf{j} \mathrm{ms}^{-2}, t > 0$	
\Rightarrow v (t) = -9.8t j + c	
$\mathbf{v}(0) = 100\mathbf{i} + 100\sqrt{3}\mathbf{j} \text{ ms}^{-1} \Longrightarrow \mathbf{c} = 100\mathbf{i} + 100\sqrt{3}\mathbf{j}$	
\therefore v (t) = 100 i + (100 $\sqrt{3}$ - 9.8t) j ms ⁻¹	
Mathematical behaviours	Marks
• integrates $\mathbf{a}(t)$ to determine $\mathbf{v}(t)$	1
• determines the constant and states the correct $\mathbf{v}(t)$	1

Question 10(c)

(6 marks)

	•
Solution	
$\mathbf{r}(t) = \int \mathbf{v}(t)dt = 100t\mathbf{i} + (100\sqrt{3}t - 4.9t^2)\mathbf{j}$ m	
maximum height $\Rightarrow 100\sqrt{3} - 9.8t = 0 \Rightarrow t = 17.7$ seconds (rounded to 1 decimal p \therefore maximum height is $\Rightarrow 1530.6$ metres (rounded to 1 decimal place)	lace)
Maximum horizontal distance when vertical distance is back to 0	
i.e. when $100\sqrt{3}t - 4.9t^2 = 0 \Longrightarrow t(100\sqrt{3} - 4.9t) = 0$	
i.e. when $100\sqrt{3} - 4.9t = 0 \Longrightarrow t = \frac{100\sqrt{3}}{4.9} = 35.35$ seconds	
: Maximum horizontal distance = $100(35.35) = 3535$ m	
Mathematical behaviours	Marks
 integrates v(t) to determine r(t) (accept assumption of constants of integration as 0 from initial conditions, without statement) 	1
• uses vertical component of $\mathbf{v}(t) = 0$ determine the time when max height is reached	1
determines the max height	1
• recognises that the max horizontal distance when vertical component =0	1
determines the time when max distance is reached	1
determines max distance	1

CACULATOR-ASSUMED MARKING KEY

Question 11 (a)

Solution	
Now	
$ z_1 = \sqrt{9^2 + 2^2} = \sqrt{85}$ and $ z_2 = \sqrt{(-7)^2 + 6^2} = \sqrt{85}$	
Since a pair of adjacent sides in the parallelogram <i>P</i> have the same length, all sides have	
the same length.	
Hence P is a rhombus.	
Mathematical behaviours	Marks
 calculates the correct values of z₁ and z₂ 	1
 makes a valid deduction about the lengths of all sides of P 	1

Question 11 (b)

(3 marks)

Solution	
Denote arg $z_1 = \varphi_1$. Then $\tan \varphi_1 = \frac{2}{9} \Longrightarrow \varphi_1 \approx 0.2187$	
Denote $\arg z_2 = \varphi_2$. Then $\tan \varphi_2 = \frac{6}{(-7)} \Rightarrow \varphi_2 \approx 2.4330$	
Hence $\varphi_2 - \varphi_1 \approx 2.4330 - 0.2187 = 2.2143$	
So the required angle is 2.21 radians (correct to 2 decimal places)	
Mathematical behaviours	Marks
• determines correctly the value of φ_1	1
• determines correctly the value φ_2	1
gives the required answer to the prescribed accuracy	1

Question 11 (c)

Solution	
We see that $z_1 - z_2 = (9 + 2i) - (-7 + 6i) = 16 - 4i$	
and that $-2i(z_1 + z_2) = -2i(2 + 8i) = 16 - 4i$	
Hence it follows that $z_1 - z_2 = -2i(z_1 + z_2)$	
Mathematical behaviours	Marks
• evaluates correctly the value of $z_1 - z_2$	1
• evaluates correctly the value of $-2i(z_1 + z_2)$.	1

Question 11 (d)

(4 marks)

Solution	
The diagonals of P are $z_1 + z_2$ and $z_1 - z_2$.	
From part (c) we deduce that $ z_1 - z_2 = -2i \times z_1 + z_2 = 2 z_1 + z_2 $.	(i)
Hence one diagonal is twice as long as the other.	
Also we have that	
$\arg(z_1 - z_2) = \arg(-2i) + \arg(z_1 + z_2) = -\frac{\pi}{2} + \arg(z_1 + z_2)$	(ii)
	(")
Hence the engle between the diagonals is $\frac{\pi}{2}$	
Hence the angle between the diagonals is $\overline{2}$.	
Mathematical behaviours	Marks
 derives the result (i) 	1
 deduces the correct ratio of the lengths of the diagonals 	1
derives the result (ii)	1
 deduces the correct angle between the diagonals 	1

Question 12(a)

CACULATOR-ASSUMED MARKING KEY

Solution	
Since the function involves a square root we need to check that the quadratic is all real values of x . As	s positive for
$x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4} > 0$ the function is defined for all real values	
Mathematical behaviours	Marks
 notes that we need to show that the contents of the square root is positive 	1
either completes the square or shows the quadratic never equals zero	1

• deduces the required result

Question 12(b)

Solution If $f(\alpha) = f(\beta)$ then $\alpha^2 + \alpha + 1 = \beta^2 + \beta + 1 \Longrightarrow (\alpha^2 - \beta^2) + (\alpha - \beta) = 0$ This then implies that $(\alpha - \beta)(\alpha + \beta + 1) = 0 \Rightarrow \alpha = \beta$ or $\alpha + \beta = -1$ Mathematical behaviours Marks forms an equation without the square root expressing the fact that 1 • $f(\alpha) = f(\beta)$ solves the equation 1 • states the two possible solutions 1

Question 12(c)

(3 marks)

Solution	
The function is not one-to-one.	
If the function were 1-1 then $f(\alpha) = f(\beta)$ would force $\alpha = \beta$.	
Since here we have the possibility that $\alpha + \beta = -1$ we do not have a 1-1 function	
Mathematical behaviours	Marks
 states the correct conclusion 	1
 indicates the property that must be satisfied by a 1-1 function 	1
 justifies why this function does not possess this property 	1

(3 marks)

1

Question 13

(6 marks)

Solution	
If $z^4 = -100$ then $ z^4 = z ^4 = 100 \implies z = 100^{1/4} = \sqrt{10}$. Also $\arg z^4 = 4 \arg z = \arg(-100) = \pi \pmod{2\pi}$ so that $4 \arg z = (1+2k)\pi \implies \arg z = \frac{(2k+1)\pi}{4}$ for $k = 0, 1, 2, 3$.	
Hence $\arg z = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}$ or $\frac{7\pi}{4}$. Written in polar form, $z = \sqrt{10}$ cis ϑ with $\vartheta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}$ or $\frac{7\pi}{4}$. Moreover, $\operatorname{cis} \frac{\pi}{4} = \frac{1}{\sqrt{2}}(1+i), \operatorname{cis} \frac{3\pi}{4} = \frac{1}{\sqrt{2}}(-1+i), \operatorname{cis} \frac{5\pi}{4} = \frac{1}{\sqrt{2}}(-1-i), \operatorname{cis} \frac{7\pi}{4} = \frac{1}{\sqrt{2}}(-1-i)$	$=\frac{1}{\sqrt{2}}(1-i),$
and $\frac{\sqrt{10}}{\sqrt{2}} = \sqrt{5}$ so the solutions are $z_1 = \sqrt{5}(1+i)$. $z_2 = \sqrt{5}(-1+i)$, $z_3 = \sqrt{5}(-1-i)$ and $z_4 = \sqrt{5}(1-i)$.	Moules
Mathematical behaviours	Marks
• derives the result that $ z ^4 = 100$	1
• deduces the correct value of z	
• obtains one value of arg $z = \pi / 4$	1
 determines all four possible values of arg z 	1
• writes down the the real and imaginary parts of the four "cis' values	1
 solves correctly for the real and imaginary parts of all four solutions 	1

Question 14(a)

(3 marks)

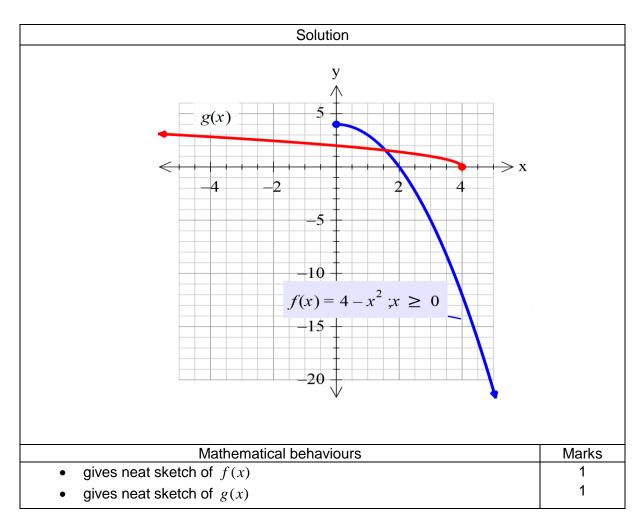
Solution	
If $y = 4 - x^2 \Longrightarrow x^2 = 4 - y \Longrightarrow x = \sqrt{4 - y}$	
Therefore the inverse function is $g(x) = \sqrt{4-x}$	
(Alternatively students may define the other branch with $x = -\sqrt{4-y}$ so $g(x) =$	$= -\sqrt{4-x}$.)
Mathematical behaviours	Marks
• writes the equation $x = f(y)$	1
• solves for x	1
states correct inverse function	1

Question 14(b)

Solution	
Domain is $x \in (-\infty, 4]$	
Range is $[0,\infty)$	
(If student took the alternative definition the range becomes $(-\infty,0]$.)	
Mathematical behaviours	Marks
states correct domain	1
states correct range	1

Question 14(c)

(2 marks)



Question 14(d)

Solution	
The two graphs are reflections of each other in the line $y = x$	
Mathematical behaviours	Marks
States the correct geometrical relationship with marks	
for mentioning reflectionfor giving the equation of the line of reflection	1 1

Question 15(a)(b)

(3+2 marks)

Solution	
$x = \cos(2t)$ y = sin(2t) since $x^2 + y^2 = \cos^2(2t) + \sin^2(2t) = 1$ z = 2	
Point <i>P</i> moves in a horizontal circle, +2 units above the xy -plane as indicated. The centre of the circle is (0,0,2) and the radius is 1 unit.	by the 2 k .
At $t = 0$, $\mathbf{r}(0) = \mathbf{i} + 2\mathbf{k}$ so the particle starts at (1,0,2) and at $t = \frac{\pi}{4}$, $\mathbf{r}(t) = \mathbf{j} + 2\mathbf{k}$ so	the particle
At $t=0$, $\mathbf{r}(0)=1+2\mathbf{k}$ so the particle starts at (1,0,2) and at $t=\frac{1}{4}$, $\mathbf{r}(t)=\mathbf{j}+2\mathbf{k}$ so the particle moves in an anticlockwise direction.	
Mathematical behaviours	Marks
 indicates that the particle moves in plane parallel to the xy – plane and 2 units above it 	1
 indicates that it is a circle 	1
 states the centre and radius of the circle 	1
 indicates that the particle moves in an anticlockwise direction 	1
 provides an appropriately labelled diagram of the circle in roughly the right position 	1

 $d = \sqrt{\cos^2(2t) + \sin^2(2t) + 2^2}$

CALCULATOR-ASSUMED MARKING KEY

Marks

1

1

(2 marks)

Question 15(c)

 $=\sqrt{1+4}$ $=\sqrt{5}$

		•
Solution		

The particle remains at a constant distance from the origin.

determines the correct distancestates that the distance from the origin is constant over time

Mathematical behaviours

Question 15(d)

Solution	
The position vector is given by $p(t) = cos(2t) i + sin(2t)j + 2k$	
Differentiating $\Rightarrow \mathbf{v}_p(t) = -2\sin(2t)\mathbf{i} + 2\cos(2t)\mathbf{j} + 0\mathbf{k}$	
Mathematical behaviours	Marks
determines the correct velocity	2
(allow one mark if attempts to differentiate but makes an error)	

Question 15(e)

Solution	
Given Q moves in a circle in the xz -plane, with centre (0,2) and radius 2, the vector	
equation is $ x\mathbf{i} + (z-2)\mathbf{k} = 2 \Rightarrow x^2 + (z-2)^2 = 4$ with $y = 2$	
Mathematical behaviours	Marks
states the correct cartesian equation	1
• remembers to state that $y = 2$	1

Question 15(f)

Solution $\left| \mathbf{p}(\frac{\pi}{2}) - \mathbf{q}(\frac{\pi}{2}) \right| = \left| \cos(\pi)\mathbf{i} + \sin(\pi)\mathbf{j} + 2\mathbf{k} - (2\cos(\frac{\pi}{2})\mathbf{i} + 2\mathbf{j} + (2 - 2\sin(\frac{\pi}{2}))\mathbf{k} \right|$ $= \left| -\mathbf{i} + 2\mathbf{k} - 2\mathbf{j} \right|$ $= \sqrt{(-1)^2 + 2^2 + 2^2}$ = 3 unitsMathematical behavioursMarks• indicates the need to determine $\left| \mathbf{p}(\frac{\pi}{2}) - \mathbf{q}(\frac{\pi}{2}) \right|$ 1• determines $\left| -\mathbf{i} + 2\mathbf{k} - 2\mathbf{j} \right|$ • calculates the correct distance

(2 marks)

(2 marks)

Question 16(a)

CACULATOR-ASSUMED **MARKING KEY**

Solution	
By De Moivre's theorem we have	
$\cos 4\theta + i \sin 4\theta = (\cos \theta + i \sin \theta)^4$	
Expanding and taking real parts gives	
$\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$	
$=\cos^4\theta - 6\cos^2\theta(1 - \cos^2\theta) + (1 - \cos^2\theta)^2$	
$=\cos^4\theta - 6\cos^2\theta + 6\cos^4\theta + 1 - 2\cos^2\theta + \cos^4\theta$	
$=8\cos^4\theta-8\cos^2\theta+1$	
Mathematical behaviours	Marks
 uses De Moivre's theorem appropriately 	1
 expands the fourth power of the expression correctly 	1
 takes the real parts of each side 	1
• replaces $\sin^2 \theta = 1 - \cos^2 \theta$ and simplifies to obtain the result	1

Question 16 (b)

(5 marks)

Solution

Let $x = \cos\theta$ where $0 \le \theta \le \pi$. Then by part (a) we have $p(x) = p(\cos\theta) = \cos 4\theta$ Hence the maximum and minimum values of p(x) are ± 1 . At maximum values $\cos 4\theta = 1 \Longrightarrow 4\theta = 2n\pi$ so that $\theta = 0, \frac{\pi}{2}$ or π within the range. Since $x = \cos \theta$ we have $x = 0, \pm 1$. At minimum values $\cos 4\theta = -1 \Rightarrow 4\theta = (2n+1)\pi$ so that $\theta = \frac{\pi}{4}$ or $\frac{3\pi}{4}$ within range whence $x = \pm \frac{1}{\sqrt{2}}$. In summary, the maximum value of p(x) is 1, and occurs at x = 1,0 or -1and the minimum value of p(x) is -1, and occurs at $x = \pm 1/\sqrt{2}$ Mathematical behaviours Marks derives 1 and -1 as the extreme values of p(x)• 1 1 determines the correct values of θ at the maximum 1 infers the corresponding correct values of x 1 determines the correct values of θ at the minimum 1 infers the corresponding correct values of x

Question 17(a)

CALCULATOR-ASSUMED MARKING KEY

(4 marks)

Solution	
We have $(f \circ g)(x) = 3\left(x + \frac{1}{x}\right) - 1 = 3x - 1 + \frac{3}{x}$. Domain is $x \neq 0$ and range is \mathbb{I}	${\mathbb R}$ (all real
numbers)	
Similarly $(g \circ f)(x) = 3x - 1 + \frac{1}{3x - 1}$. Domain is $x \neq \frac{1}{3}$ and range is \mathbb{R} (all real n	umbers)
Mathematical behaviours	Marks
determines the two composite functions correctly (one mark for each)	1
• states domain and range of $(f \circ g)$	1
• states domain and range of $(g \circ f)$	1

Question 17(b)

Solution	
If $(f \circ g)(p) = (g \circ f)(p)$ then	
$3p-1+\frac{3}{p}=3p-1+\frac{1}{3p-1} \Longrightarrow 3(3p-1)=p \Longrightarrow p=\frac{3}{8}$	
Mathematical behaviours	Marks
forms an appropriate equation for <i>p</i>	1
solves correctly	1

Question 18(a)

(1 mark)

(3 marks)

Solution	
Since plane <i>DEFG</i> is parallel to the y_z -plane, and $x=3$ everywhere on the transmission of transm	ne plane the
equation is $x = 3$ (in vector form the equation is $\mathbf{r.i} = 3$)	
Mathematical behaviours	Marks
states the correct equation of the plane	1

Question 18(b)

Solution		
Largest sphere will have a diameter = 3 units, so the radius = 1.5 units and centre = $\left(\frac{3}{2}, 2, \frac{c}{2}\right)$		
Vector form:	$\left \mathbf{r}-c\right = \rho \Longrightarrow \left \mathbf{r}-\left(\frac{3}{2},2,\frac{c}{2}\right)\right = \frac{3}{2}$	
Cartesian form:	$\left(x - \frac{3}{2}\right)^{2} + \left(y - 2\right)^{2} + \left(z - \frac{c}{2}\right)^{2} = \frac{9}{4}$	
	Mathematical behaviours	Marks
states the centre and radius of the sphere		1
states the vector equation		1
states the Cartesian equation		1

Question 18(c)

Solution		
$\overrightarrow{OB} = \begin{pmatrix} 0\\4\\c \end{pmatrix} \text{ and } \overrightarrow{OG} = \begin{pmatrix} 3\\4\\c \end{pmatrix} \Rightarrow \overrightarrow{OB} \times \overrightarrow{OG} = \begin{pmatrix} 0\\3c\\-12 \end{pmatrix}$ $\therefore \text{ equation of plane is:}$ 0.(x-0) + 3c.(y-0) - 12.(z-0) = 0		
\Rightarrow $3cy-12z=0$		
\Rightarrow $cy = 4z$		
Mathematical behaviours		
determines the cross product of two appropriate vectors		
uses the cross product to determine the equation of the plane		
states the correct plane equation		

Question 18(d)

CALCULATOR-ASSUMED MARKING KEY

(5 marks)

Solution		
<i>M</i> has coordinates $\left(3,0,\frac{c}{2}\right)$ and $C(0,4,0)$		
vector equation of a line L passing through points with position vectors a and b:		
(i) $\mathbf{r}(t) = \mathbf{a} + t(\mathbf{b} - \mathbf{a}) = <0, 4, 0 > +t \left(<3, 0, \frac{c}{2} > -<0, 4, 0)\right)$		
$=<0,4,0>+t<3,-4,\frac{c}{2}>$		
which in parametric form is:		
$x = 3t, y = 4(1-t), z = \frac{ct}{2}$		
(ii) Substituting $x = 3t$, $y = 4(1-t)$, $z = \frac{ct}{2}$ into $cy = 4z$		
$\Rightarrow 4c(1-t) = 4\frac{ct}{2}$		
$\Rightarrow 4-4t=2t$		
$\Rightarrow t = \frac{2}{3}$		
when $t = \frac{2}{3}$, $x = 2$, $y = \frac{4}{3}$, $z = \frac{c}{3}$		
\therefore the line intersects the plane at $\left(2, \frac{4}{3}, \frac{c}{3}\right)$		
so its position vector is $2\mathbf{i} + \frac{4}{3}\mathbf{j} + \frac{c}{3}\mathbf{k}$		
Mathematical behaviours		
• determines the position vector for <i>M</i>		
• uses the position vectors of M and C to determine the vector equation of	1	
the line		
 states the equation of the line in equivalent parametric form. 	1	
• substitutes into the equation of the plane $cy = 4z$		
(or whatever found in part (c))	1	
states the position vector of the point of intersection	ľ	

Question 18(e)

CACULATOR-ASSUMED MARKING KEY

Solution		
For $c = 5$, the point of intersect from part (d) X is at $\left(2, \frac{4}{3}, \frac{5}{3}\right)$ and $C(0, 4, 0)$		
$\therefore \overrightarrow{XC} = -2\mathbf{i} + \frac{8}{3}\mathbf{j} - \frac{5}{3}\mathbf{k} \text{ and } \overrightarrow{XG} = \mathbf{i} + \frac{8}{3}\mathbf{j} + \frac{10}{3}\mathbf{k}$		
Using the dot product of \overrightarrow{XC} and \overrightarrow{XG} or the angle between vectors on a C the angle between the line and the plane is 91.6°.	AS calculator	
$[-2, \frac{8}{3}, -\frac{5}{3}] \Rightarrow \alpha$		
$\left[-2 \frac{8}{3} -\frac{5}{3}\right]$		
[1, ⁸ / ₃ , ¹⁰ / ₃] ⇒b		
$\left[1 \ \frac{8}{3} \ \frac{10}{3}\right]$		
$angle(\boldsymbol{\alpha}, \boldsymbol{b})$		
91.55868421		
Mathematical behaviours		
• determines an appropriate vector in the line (e.g \overrightarrow{XC})		
• determines an appropriate vector in the plane (e.g \overrightarrow{XG})		
• states the angle between the plane and the line (accept any suitable rounding)		